Sign-changing solutions on a kind of fourth-order Neumann boundary value problem
نویسندگان
چکیده
منابع مشابه
Existence of Solutions for Fourth-Order Discrete Neumann Boundary Value Problem
In this paper, we investigate the solutions of fourth-order discrete boundary value problem. By using critical point theory the existence of positive solutions and infinitely many solutions are obtained.
متن کاملMultiple solutions for fourth order m - point boundary value problems with sign - changing nonlinearity ∗
Using a fixed point theorem in ordered Banach spaces with lattice structure founded by Liu and Sun, this paper investigates the multiplicity of nontrivial solutions for fourth order m-point boundary value problems with sign-changing nonlinearity. Our results are new and improve on those in the literature.
متن کاملMultiple Positive Solutions to a Fourth-order Boundary-value Problem
We study the existence, localization and multiplicity of positive solutions for a nonlinear fourth-order two-point boundary value problem. The approach is based on critical point theorems in conical shells, Krasnosel’skĭı’s compression-expansion theorem, and unilateral Harnack type inequalities.
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملTwin positive solutions of second-order m-point boundary value problem with sign changing nonlinearities
In this paper, we study second-order m-point boundary value problem { u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = ∑k i=1 aiu(ξi)− ∑m−2 i=k+1 aiu(ξi), where ai > 0(i = 1, 2, · · ·m − 2), 0 < ∑k i=1 ai − ∑m−2 i=k+1 ai < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Will...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2008.02.050